該雜志國際簡稱:J MATH FLUID MECH,是由出版商Springer International Publishing出版的一本致力于發(fā)布數(shù)學(xué)研究新成果的的專業(yè)學(xué)術(shù)期刊。該雜志以MECHANICS研究為重點(diǎn),主要發(fā)表刊登有創(chuàng)見的學(xué)術(shù)論文文章、行業(yè)最新科研成果,扼要報(bào)道階段性研究成果和重要研究工作的最新進(jìn)展,選載對(duì)學(xué)科發(fā)展起指導(dǎo)作用的綜述與專論,促進(jìn)學(xué)術(shù)發(fā)展,為廣大讀者服務(wù)。該刊是一本國際優(yōu)秀雜志,在國際上有很高的學(xué)術(shù)影響力。
《Journal Of Mathematical Fluid Mechanics》是一本以English為主的未開放獲取國際優(yōu)秀期刊,中文名稱數(shù)學(xué)流體力學(xué)雜志,本刊主要出版、報(bào)道數(shù)學(xué)-MECHANICS領(lǐng)域的研究動(dòng)態(tài)以及在該領(lǐng)域取得的各方面的經(jīng)驗(yàn)和科研成果,介紹該領(lǐng)域有關(guān)本專業(yè)的最新進(jìn)展,探討行業(yè)發(fā)展的思路和方法,以促進(jìn)學(xué)術(shù)信息交流,提高行業(yè)發(fā)展。該刊已被國際權(quán)威數(shù)據(jù)庫SCIE收錄,為該領(lǐng)域相關(guān)學(xué)科的發(fā)展起到了良好的推動(dòng)作用,也得到了本專業(yè)人員的廣泛認(rèn)可。該刊最新影響因子為1.2,最新CiteScore 指數(shù)為2。
本刊近期中國學(xué)者發(fā)表的論文主要有:
Well-Posedness for the Incompressible Hall-MHD System with Initial Magnetic Field Belonging to H-3/2 (R-3)
Author: Zhang, Shunhang
Wave Breaking for the Constantin-Lannes Equation Revisited
Author: Wei, Long
Nowhere-Uniform Continuity of the Data-to-Solution Map for the Two-Component Fornberg-Whitham
Author: Yu, Yanghai; Tang, Weijie
Single-ion conducting polymer as lithium salt additive in polymerized ionic liquid block copolymer electrolyte
Author: Wang, Jinhuan; Wang, Weike; Wang, Yucheng
英文介紹
Journal Of Mathematical Fluid Mechanics雜志英文介紹
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
中科院SCI分區(qū)
Journal Of Mathematical Fluid Mechanics雜志中科院分區(qū)信息