卷積神經(jīng)網(wǎng)絡(luò)具體步驟范文
時(shí)間:2024-04-09 17:53:00
導(dǎo)語:如何才能寫好一篇卷積神經(jīng)網(wǎng)絡(luò)具體步驟,這就需要搜集整理更多的資料和文獻(xiàn),歡迎閱讀由公務(wù)員之家整理的十篇范文,供你借鑒。
篇1
【關(guān)鍵詞】:高速公路 防逃 人臉識(shí)別 高清視
中圖分類號(hào):U412.36+6 文獻(xiàn)標(biāo)識(shí)碼:A
人臉識(shí)別的分類與概述
人臉識(shí)別就是通過計(jì)算機(jī)提取人臉的特征,并根據(jù)這些特征進(jìn)行身份驗(yàn)證。人臉與人體的其他生物特征(指紋、虹膜等)一樣與生俱來,它們所具有的唯一性和不易被復(fù)制的良好特性為身份鑒別提供了必要的前提;同其他生物特征識(shí)別技術(shù)相比,人臉識(shí)別技術(shù)具有操作簡(jiǎn)單、結(jié)果直觀、隱蔽性好的優(yōu)越性。人臉識(shí)別一般包括三個(gè)步驟:人臉檢測(cè)、人臉特征提取和人臉的識(shí)別與驗(yàn)證。其處理流程如圖
輸入圖像 人臉圖像人臉特征輸出結(jié)果
人臉識(shí)別的一般步驟
人臉識(shí)別方法繁多,早期研究較多的方法有基于幾何特征的人臉識(shí)別方法和基于模板匹配的人臉識(shí)別方法。目前人臉識(shí)別方法主要研究及應(yīng)用的是基于統(tǒng)計(jì)的識(shí)別方法、基于連接機(jī)制的識(shí)別方法以及其它一些綜合方法。下面是這幾類方法的基本介紹:[2]
(1)基于幾何特征的人臉識(shí)別方法
幾何特征矢量是以人臉器官如眼睛、鼻子、嘴巴等的形狀和幾何關(guān)系為基礎(chǔ)的特征矢量,其分量通常包括人臉指定兩點(diǎn)間距離、曲率、角度等。早期的研究者Brunelli[3]等人采用改進(jìn)的積分投影法提取出用歐式距離表征的35維人臉特征矢量用于人臉識(shí)別。Huang Chung Lin等人[4]采用動(dòng)態(tài)模板[5,6,7]與活動(dòng)輪廓模型提取出人臉器官的輪廓[8,9,10]?;趲缀翁卣鞯娜四樧R(shí)別方法有如下優(yōu)點(diǎn):符合人類識(shí)別人臉的機(jī)理,易于理解;對(duì)每幅圖像只需要存儲(chǔ)一個(gè)特征矢量,存儲(chǔ)量小;對(duì)光照變化不敏感。但這種方法同樣存在一些問題,如從圖像中提取這些特征比較困難;對(duì)強(qiáng)烈的表情變化和姿態(tài)變化的魯棒性差等。
(2)基于模板匹配的人臉識(shí)別方法
模板匹配大都采用歸一化相關(guān),直接計(jì)算兩幅圖之間的匹配程度。最簡(jiǎn)單的人臉模板就是將人臉看成一個(gè)橢圓[10,11]。另一種方法就是將人臉用一組獨(dú)立的小模板表示,如眼睛模板、嘴巴模板、鼻子模板等,采用彈性模板方法提取這些模板特征[12]。Brunelli等人專門比較了基于幾何特征的人臉識(shí)別方法和基于模板匹配的人臉識(shí)別方法,他們得出的結(jié)論是:基于幾何特征的人臉識(shí)別方法具有識(shí)別速度快和內(nèi)存要求小等優(yōu)點(diǎn),但基于模板匹配的識(shí)別率要高于基于幾何特征的識(shí)別率。
(3)基于統(tǒng)計(jì)的人臉識(shí)別方法
基于統(tǒng)計(jì)特征的識(shí)別方法包括基于特征臉的方法和基于隱馬爾可夫模型的方法。特征臉(Eigenface)方法[13]是從主成分分析導(dǎo)出的一種人臉識(shí)別和描述技術(shù)。主成分分析實(shí)質(zhì)上是K-L展開的網(wǎng)絡(luò)遞推實(shí)現(xiàn),K-L變換是圖像壓縮中的一種最優(yōu)正交變換,其生成矩陣一般為訓(xùn)練樣本的總體散布矩陣。特征臉方法就是將包含人臉的圖像區(qū)域看作是一種隨機(jī)向量,因此可以采用K-L變換獲得其正交K-L基底。對(duì)應(yīng)其中較大特征值的基底具有與人臉相似的形狀,因此又稱之為特征臉。
隱馬爾可夫模型(HMM)是用于描述信號(hào)統(tǒng)計(jì)特性的一組統(tǒng)計(jì)模型?;谌四槒纳系较隆淖蟮接业慕Y(jié)構(gòu)特征,Samaria等人[14]首先將1-D HMM和2-D Pseudo HMM用于人臉識(shí)別。Kohir等[15]采用1-D HMM將低頻DCT系數(shù)作為觀察矢量獲得了好的識(shí)別效果。Eickeler等[16]采用2-DPseudo HMM識(shí)別DCT壓縮的JPEG圖像中的人臉圖像。Nefian等[17]采用嵌入式HMM識(shí)別人臉。
(4)基于連接機(jī)制的人臉識(shí)別方法(神經(jīng)網(wǎng)絡(luò)彈性圖匹配)
基于連接機(jī)制的識(shí)別方法,包括一般的神經(jīng)網(wǎng)絡(luò)方法和彈性圖匹配(Elastic Graph Matching)方法。神經(jīng)網(wǎng)絡(luò)在人臉識(shí)別應(yīng)用中有很長(zhǎng)的歷史[18]。Demers 等[19]提出采用PCA方法提取人臉圖像特征,用自相關(guān)神經(jīng)網(wǎng)絡(luò)進(jìn)一步壓縮特征,最后采用一個(gè)多層處理器來實(shí)現(xiàn)人臉識(shí)別。Laurence等[20]通過一個(gè)多級(jí)的SOM實(shí)現(xiàn)樣本的聚類,將卷積神經(jīng)網(wǎng)絡(luò)(CNN)用于人臉識(shí)別。Lin等[21]采用基于概率決策的神經(jīng)網(wǎng)絡(luò)(PDBNN)方法。最近,徑向基函數(shù)RBF神經(jīng)網(wǎng)絡(luò)因具有逼近性好、空間描述緊湊和訓(xùn)練速度快等特點(diǎn)而被用于人臉識(shí)別。Gutta等[22]提出了將RBF與樹分類器結(jié)合起來進(jìn)行人臉識(shí)別的混合分類器結(jié)構(gòu),后來他們用RBF神經(jīng)網(wǎng)絡(luò)進(jìn)行了針對(duì)部分人臉的識(shí)別研究[23],他們的研究表明利用部分人臉也可以有效地識(shí)別人臉。Er等[24]采用PCA進(jìn)行維數(shù)壓縮,再用LDA抽取特征,然后基于RBF進(jìn)行人臉識(shí)別。Haddadnia 等[25]基于PZMI(Pseudo Zernike Moment Invariant)特征,并采用混合學(xué)習(xí)算法的RBF神經(jīng)網(wǎng)絡(luò)進(jìn)行人臉識(shí)別。此外,Lucas 等采用連續(xù)的n-tuple網(wǎng)絡(luò)識(shí)別人臉。
彈性圖匹配方法是一種基于動(dòng)態(tài)鏈接結(jié)構(gòu)的方法[26]。在人臉圖像上放置一組矩形網(wǎng)格節(jié)點(diǎn),每個(gè)節(jié)點(diǎn)的特征用該節(jié)點(diǎn)處的多尺度Gabor幅度特征描述,各節(jié)點(diǎn)之間的連接關(guān)系用幾何距離表示,從而構(gòu)成基于二維拓?fù)鋱D的人臉描述。根據(jù)兩個(gè)圖像中各節(jié)點(diǎn)和連接之間的相似性可以進(jìn)行人臉識(shí)別。Wiskott等[27]將人臉特征上的一些點(diǎn)作為基準(zhǔn)點(diǎn),強(qiáng)調(diào)了人臉特征的重要性。他們采用每個(gè)基準(zhǔn)點(diǎn)存儲(chǔ)一串具有代表性的特征矢量,大大減少了系統(tǒng)的存儲(chǔ)量。Würtz 等[28]只使用人臉面部的特征,進(jìn)一步消除了結(jié)構(gòu)中的冗余信息和背景信息,并使用一個(gè)多層的分級(jí)結(jié)構(gòu)。Grudin等[29]也采用分級(jí)結(jié)構(gòu)的彈性圖,通過去除了一些冗余節(jié)點(diǎn),形成稀疏的人臉描述結(jié)構(gòu)。Nastar等[30]提出將人臉圖像I(x,y)表示為可變形的3D網(wǎng)格表面(x, y, I(x,y)),將人臉匹配問題轉(zhuǎn)換為曲面匹配問題,利用有限元分析的方法進(jìn)行曲面變形,根據(jù)兩幅圖像之間變形匹配的程度識(shí)別人臉。
(5)基于形變模型的方法
基于形變模型的方法是一個(gè)受到重視的方法。通過合成新的視覺圖像,可以處理姿態(tài)變化的問題。Lanitis等[31]通過在人臉特征邊沿選擇一些稀疏的基準(zhǔn)點(diǎn)描述人臉的形狀特征,然后將形狀變形到所有人臉圖像的平均形狀,再根據(jù)變形后的形狀進(jìn)行紋理(灰度)變形,形成與形狀無關(guān)的人臉圖像。然后分別對(duì)形狀和灰度進(jìn)行PCA變換,根據(jù)形狀和紋理的相關(guān)性,用PCA對(duì)各自的結(jié)果進(jìn)一步分析,最終得到描述人臉的AAM(Active Appearance Model)模型。通過改變這些參數(shù)可得到不同變化的人臉圖像,模型參數(shù)能夠用于人臉識(shí)別。Romdhani 等[32]采用激光掃描儀獲得人臉的3D數(shù)據(jù),分別對(duì)一些基準(zhǔn)點(diǎn)構(gòu)成的形狀和基準(zhǔn)點(diǎn)的灰度(或彩色)完成PCA,得到3D人臉形狀和灰度(彩色)基圖像,通過變化參數(shù)就可獲得不同的3D人臉模型。通過施加一些先驗(yàn)約束可以避免合成不真實(shí)的人臉圖像。利用線性形狀和紋理誤差,通過3D模型向2D輸入圖像的自動(dòng)匹配實(shí)現(xiàn)人臉識(shí)別。
項(xiàng)目采用的識(shí)別算法
人臉自動(dòng)識(shí)別技術(shù)經(jīng)過多年來的研究已經(jīng)積累了大量研究成果。但是仍然面臨很多問題,尤其是在非約束環(huán)境下的人臉識(shí)別。結(jié)合本研究項(xiàng)目及應(yīng)用環(huán)境綜合考慮,采用特征臉方法對(duì)視屏資料中的司機(jī)臉部進(jìn)行提取識(shí)別。
特征臉方法是90年代初期由Turk和Pentland提出算法,具有簡(jiǎn)單有效的特點(diǎn), 也稱為基于主成分分析(principal component analysis,簡(jiǎn)稱PCA)的人臉識(shí)別方法。把人臉圖像空間線性投影到一個(gè)低維的特征空間。PCA實(shí)質(zhì)上是K-L展開的網(wǎng)絡(luò)遞推實(shí)現(xiàn)。K-L變換是圖像壓縮技術(shù)中的一種最優(yōu)正交變換。人們將它用于統(tǒng)計(jì)特征提取。從而形成子空間法模式識(shí)別的基礎(chǔ)。若將K-L變換用于人臉識(shí)別,則需假設(shè)人臉處于低維線性空間。由高維圖像空間K-L變換后,可得到一組新的正交基,由此可以通過保留部分正交基獲得正交K-L基底。如將子空間對(duì)應(yīng)特征值較大的基底按照?qǐng)D像陣列排列,則可以看出這些正交基呈現(xiàn)出人臉的形狀。因此這些正交基也稱為特征臉,這種人臉的識(shí)別方法也叫特征臉法。
特征子臉技術(shù)的基本思想是:從統(tǒng)計(jì)的觀點(diǎn),尋找人臉圖像分布的基本元素,即人臉圖像樣本集協(xié)方差矩陣的特征向量,以此近似地表征人臉圖像。這些特征向量稱為特征臉(Eigenface)。
利用這些基底的線性組合可以描述、表達(dá)和逼近人臉圖像,因此可以進(jìn)行人臉識(shí)別與合成。識(shí)別過程就是將人臉圖像映射到由特征臉張成的子空間上,比較其與已知人臉在特征臉空間中的位置,具體步驟如下:[33]
(1)初始化,獲得人臉圖像的訓(xùn)練集并計(jì)算特征臉,定義為人臉空間;
(2)輸入待識(shí)別人臉圖像,將其映射到特征臉空間,得到一組權(quán)值;
(3)通過檢查圖像與人臉空間的距離判斷它是否為人臉;
(4)若為人臉,根據(jù)權(quán)值模式判斷它是否為數(shù)據(jù)庫(kù)中的某個(gè)人。
1. 計(jì)算特征臉
假設(shè)人臉圖像包含個(gè)像素,因此可以用維向量Γ表示。如人臉訓(xùn)練集由幅人臉圖像構(gòu)成,則可以用表示人臉訓(xùn)練集。
其均值為:
(2-1)
每幅圖像與均值的差為:
(2-2)
構(gòu)造人臉訓(xùn)練集的協(xié)方差矩陣:
(2-3)
其中 。
協(xié)方差矩陣的正交分解向量即為人臉空間的基向量,也即特征臉。
一般比較大(通常大于1000),所以對(duì)矩陣直接求解特征向量是不可能的,為此引出下列定理:
SVD定理:設(shè)是一秩為的維矩陣,則存在兩個(gè)正交矩陣:
(2-4)
(2-5)
以及對(duì)角陣:
(2-6)
滿足
其中:為矩陣和的非零特征值,和分別為和對(duì)應(yīng)于的特征矢量。上述分解成為矩陣的奇異值分解(SVD),為的奇異值。
推論:
(2-7)
由上述定理可知:
人臉訓(xùn)練集所包含的圖像一般要比圖像的像素?cái)?shù)小的多,因此可以轉(zhuǎn)求矩陣
(2-8)
的特征向量,M為人臉訓(xùn)練集圖像總數(shù)。
矩陣的特征向量由差值圖像與線性組合得到:
=(2-9)
實(shí)際上,m(m
(2-10)
識(shí)別
基于特征臉的人臉識(shí)別過程由訓(xùn)練階段和識(shí)別階段兩個(gè)階段組成。在訓(xùn)練階段,每個(gè)己知人臉映射由特征臉張成的子空間上,得到m維向量:
(2-11)
距離閾值定義如下:
(2-12)
在識(shí)別階段,首先把待識(shí)別的圖像映射到特征臉空間,得到向量
(2-13)
與每個(gè)人臉集的距離定義為
(2-14)
為了區(qū)分人臉和非人臉,還需計(jì)算原始圖像與其由特征臉空間重建的圖像之間的距離:
(2-15)
其中:
(2-16)
采用最小距離法對(duì)人臉進(jìn)行分類,分類規(guī)則如下:
(1)若,則輸入圖像不是人臉圖像;
(2)若,則輸入圖像包含未知人臉;
(3)若,則輸入圖像為庫(kù)中的某個(gè)人臉。
實(shí)際上,特征臉反映了隱含在人臉樣本集合內(nèi)部的信息和人臉的結(jié)構(gòu)關(guān)系。將眼睛、面頰、下頜的樣本集協(xié)方差矩陣的特征向量稱為特征眼、特征頜和特征唇,統(tǒng)稱特征子臉。特征子臉在相應(yīng)的圖像空間中生成子空間,稱為子臉空間。計(jì)算出測(cè)試圖像窗口在子臉空間的投影距離,若窗口圖像滿足閾值比較條件,則判斷其為人臉。
基于特征分析的方法,也就是將人臉基準(zhǔn)點(diǎn)的相對(duì)比率和其它描述人臉臉部特征的形狀參數(shù)或類別參數(shù)等一起構(gòu)成識(shí)別特征向量,這種基于整體臉的識(shí)別不僅保留了人臉部件之間的拓?fù)潢P(guān)系,而且也保留了各部件本身的信息,而基于部件的識(shí)別則是通過提取出局部輪廓信息及灰度信息來設(shè)計(jì)具體識(shí)別算法?,F(xiàn)在Eigenface(PCA)算法已經(jīng)與經(jīng)典的模板匹配算法一起成為測(cè)試人臉識(shí)別系統(tǒng)性能的基準(zhǔn)算法;而自1991年特征臉技術(shù)誕生以來,研究者對(duì)其進(jìn)行了各種各樣的實(shí)驗(yàn)和理論分析,F(xiàn)ERET測(cè)試結(jié)果也表明,改進(jìn)的特征臉?biāo)惴ㄊ侵髁鞯娜四樧R(shí)別技術(shù),也是具有最好性能的識(shí)別方法之一。
該方法是先確定眼虹膜、鼻翼、嘴角等面像五官輪廓的大小、位置、距離等屬性,然后再計(jì)算出它們的幾何特征量,而這些特征量形成一描述該面像的特征向量。其技術(shù)的核心實(shí)際為"局部人體特征分析"和"圖形/神經(jīng)識(shí)別算法。"這種算法是利用人體面部各器官及特征部位的方法。如對(duì)應(yīng)幾何關(guān)系多數(shù)據(jù)形成識(shí)別參數(shù)與數(shù)據(jù)庫(kù)中所有的原始參數(shù)進(jìn)行比較、判斷與確認(rèn)。Turk和Pentland提出特征臉的方法,它根據(jù)一組人臉訓(xùn)練圖像構(gòu)造主元子空間,由于主元具有臉的形狀,也稱為特征臉,識(shí)別時(shí)將測(cè)試圖像投影到主元子空間上,得到一組投影系數(shù),和各個(gè)已知人的人臉圖像比較進(jìn)行識(shí)別。
結(jié)束語
從目前國(guó)情來講,在一段時(shí)間內(nèi)高速公路收費(fèi)還會(huì)繼續(xù)存在,某些司機(jī)逃費(fèi)的僥幸心也同樣會(huì)有。通過帶路徑識(shí)別功能的 RFID 復(fù)合卡作為通行卡,利用 RFID 卡的信息對(duì)車輛進(jìn)行跟蹤,在不增加硬件投入的情況下,直接可以給車道收費(fèi)系統(tǒng)提供抓拍高清圖像,以及其它報(bào)警聯(lián)動(dòng)系統(tǒng)提供圖像等,可有效解決高速公路沖卡逃費(fèi)問題,可廣泛應(yīng)用于封閉式管理的公路收費(fèi)系統(tǒng)。
參考文獻(xiàn):
[1]江艷霞. 視頻人臉跟蹤識(shí)別算法研究. 上海交通大學(xué)博士學(xué)位論文,2007.
[2]Brunelli R and Poggio T., Feature Recognition: Features Versus Templates. IEEE Transactions on
PAMI, 1993, 15(10):1042 -1052.
[3]李剛. 基于特征臉法的正面人臉識(shí)別研究. 國(guó)防科學(xué)技術(shù)大學(xué)碩士學(xué)位論文,2002.11
[4]JOHN CANNY. A Computational Approach to Edge Detection. IEEE TRANSACTIONS ON PATTERN
ANALYSIS AND MACHINE INTELLIGENCE, VOL.PAMI-8, NO.6, NOVEMBER 1986.
[5]張建飛、陳樹越等. 基于支持向量基的交通視頻人車識(shí)別研究[J]. 電視技術(shù),2011
[6]肖波、樊友平等. 復(fù)雜背景下基于運(yùn)動(dòng)特征的人面定位[J]. 重慶大學(xué)學(xué)報(bào),2002
[7] 《中華人民共和國(guó)交通部公路聯(lián)網(wǎng)收費(fèi)技術(shù)要求》,交通部
[8] 《廣東省高速公路聯(lián)網(wǎng)收費(fèi)系統(tǒng)》,DB44 127-2003,廣東省質(zhì)量技術(shù)監(jiān)督局
[9] 《視頻安防監(jiān)控?cái)?shù)字錄像設(shè)備》,GB 20815-2006
[10]《安全防范工程技術(shù)規(guī)范》,GB 50348-2004